Causal diagrams, information bias, and thought bias
نویسندگان
چکیده
Information bias might be present in any study, including randomized trials, because the values of variables of interest are unknown, and researchers have to rely on substitute variables, the values of which provide information on the unknown true values. We used causal directed acyclic graphs to extend previous work on information bias. First, we show that measurement is a complex causal process that has two components, ie, imprinting and synthesizing. Second, we explain how the unknown values of a variable may be imputed from other variables, and present examples of valid and invalid substitutions for a variable of interest. Finally, and most importantly, we describe a previously unrecognized bias, which may be viewed as antithetical to information bias. This bias arises whenever a variable does not exist in the physical world, yet researchers obtain "information" on its nonexistent values and estimate nonexistent causal parameters. According to our thesis, the scientific literature contains many articles that are affected by such bias.
منابع مشابه
Structural Approach to Bias in Meta-analyses.
Methods to calculate bias-adjusted estimates for meta-analyses are becoming more popular. The objective of this paper is to use the structural approach to bias and causal diagrams to show that (i) the current use of the bias-adjusted estimating tools may sometimes introduce bias rather than reduce it and (ii) the Cochrane collaboration risk of bias tool, which was designed for randomized studie...
متن کاملCausal diagrams and the cross-sectional study
The cross-sectional study design is sometimes avoided by researchers or considered an undesired methodology. Possible reasons include incomplete understanding of the research design, fear of bias, and uncertainty about the measure of association. Using causal diagrams and certain premises, we compared a hypothetical cross-sectional study of the effect of a fertility drug on pregnancy with a hyp...
متن کاملCausal diagrams and the logic of matched case-control studies [Corrigendum]
It is tempting to assume that confounding bias is eliminated by choosing controls that are identical to the cases on the matched confounder(s). We used causal diagrams to explain why such matching not only fails to remove confounding bias, but also adds colliding bias, and why both types of bias are removed by conditioning on the matched confounder(s). As in some publications, we trace the logi...
متن کاملInterpreting Ambiguous Social Situations in Social Anxiety: Application of Computerized Task Measuring Interpretation Bias
Background and Aims: The interpretation bias which is an important factor in the pathology of social anxiety disorder, has been recently considered in therapeutic approaches. Given the importance of interpretation bias in the treatment of social anxiety, and despite the ambiguity in the relationship between social anxiety and interpretation bias, we compared the interpretation bias in individua...
متن کاملQuantification of collider-stratification bias and the birthweight paradox.
The 'birthweight paradox' describes the phenomenon whereby birthweight-specific mortality curves cross when stratified on other exposures, most notably cigarette smoking. The paradox has been noted widely in the literature and numerous explanations and corrections have been suggested. Recently, causal diagrams have been used to illustrate the possibility for collider-stratification bias in mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2010